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Abstract

The study of unsteady turbulent flows can lead to non-equilibrium turbulence spectra and there is a need to develop new subgrid-

scale models that can be efficient in such situations. This is particularly necessary if the grid is coarse and the cutoff lies before the

inertial zone of the spectrum. The model should be able to behave like a standard LES when the filter is sharp and like RANS

models when the filter is wide, in a progressive way. The present work is a first step in that direction made by using transport

equations for the subgrid-scale turbulence. We have used a transposition of the statistical model of Hassid and Poreh. The results of

the simulations show that the one-equation model can predict the lag effects in the turbulent field response in pulsed channel flow,

while the usual Smagorinsky model fails in several aspects. � 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Unsteady turbulent flows prevail in a wide variety of
situations occurring in industrial or environmental ap-
plications. Unsteady turbulence still needs new model-
ling and simulation tools with enough generality to
tackle the problem of non-equilibrium turbulence that
results in non-standard spectral distributions of the
turbulent energy. Just cite for instance the important
hysteresis occurrences in aeronautical situations.

We consider here the unsteadiness created by periodic
forcing in turbulent plane channel flow by means of
imposed periodic oscillations of the mean longitudinal
pressure gradient. This pulsed turbulent channel flow
has been thoroughly investigated experimentally by
Binder and Kueny (1981) and Tardu et al. (1994) who
have studied the effect of various frequency and ampli-
tude regimes of the imposed perturbation on the tur-
bulent flow field. The particular choice of this specific

turbulent flow is well suited to illustrate non-equilibrium
turbulence because it represents an example of complex
flow that can be studied numerically in a relatively
simple way. First, there is only one non-homogeneous
direction (normal to the walls) and second, the time
periodicity of the forcing allows the use of a phase av-
eraging procedure which gives a detailed description of
the turbulent field response.

The experimental results have put in light lag effects
that, in particular, appear between the modulation of
the Reynolds stresses and the mean axial velocity. These
effects have been also evidenced by Hanjalic and Stosic
(1983) using full turbulence closure. In the case of large
eddy simulations, this non-equilibrium behaviour can-
not be reproduced by using a subgrid-scale model as
simple as the classical Smagorinsky model, which is
based on an implicit equilibrium hypothesis. More ad-
vanced models have been proposed in the literature in-
cluding the dynamic model proposed by Germano et al.
(1991) and the structure model of Metais and Lesieur
(1992). Transport equations of the subgrid-scale turbu-
lence have also been introduced by Horiuti and
Yoshizawa (1986), Schumann (1975) and also Deardorff
(1973). This latter approach is an appealing route
for developing a hybrid method that bridges the LES
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approach and the RANS approach. In the present
paper, we propose a first step in this direction, using a
one-equation transport model to calculate the subgrid
turbulence field. It is also a first step to get rid of equi-
librium or similarity hypothesis that impedes models
derived from the Smagorinsky concept.

In the first part of the present paper, the proposed
modelling method developed to study the pulsed chan-
nel flow is presented. It includes the phase averaging
statistical procedure, the filtering approach and the
numerical method. Particular attention is focussed on
the derivation of the one-equation subgrid-scale model,
which differs from the Horiuti and Yoshizawa (1986) or
Schumann (1975) models in several aspects. In the sec-
ond part, the Smagorinsky model and the transport
equation model predictions are compared in the case of
fully turbulent steady channel flow. This allows to val-
idate the transport equation model formulation, indeed
for this peculiar quasi-equilibrium flow, both models
should lead to an equivalent behaviour. The third part is
dedicated to the discussion of the predictions obtained
in the oscillatory flow for each type of model. The in-
fluence of the density of mesh points is also considered.

2. Numerical approach and models

2.1. Term decomposition

The analysis is based on a formalism using a four-
term decomposition. Each instantaneous variable q is
split into a statistical mean value and a fluctuating part.
The statistical mean value is in fact identified as the
phase average and can be in its turn, split into a time
mean value hqi and a phase periodic oscillation ~qq. The
fluctuating turbulent part is then composed of an ex-
plicit part q0exp simulated by the numeric and an implicit
part q0imp, which is modelled

q ¼ hqi þ ~qqþ q0exp þ q0imp ð1Þ

After a filtering operation applied on the instantaneous
Navier–Stokes equations and modelling the subgrid-
scale turbulent stresses using a subgrid-scale viscosity
hypothesis, we obtain the following well-known equa-
tions of motion for LES

oUi

ot
þ oUiUj

oxj
¼ Fi �

1

q
op
oxi

� osij

oxj
þ 1

Res

r2Ui

oUi

oxi
¼ 0

: ð2Þ

with U ¼ hUi þ ~UU þ U 0
exp and in which Res denotes the

Reynolds number defined as Res ¼ usd=m, while Fi ¼
ððop=qÞ=oxÞdi1 is the mean gross pressure gradient nec-
essary to maintain the motion and sij is the subgrid-scale
stress tensor. The pressure p is referred to as ‘‘pseudo-

pressure’’ because it includes the spherical part of the
stress tensor.

All the quantities are non-dimensionalized using the
wall shear velocity us and the half-width d of the chan-
nel. The present computations use a Gaussian filter in
the two periodic directions x and y, which produces a
progressive and smooth transition between resolved and
unresolved scales. Generally, the filter width Di is chosen
twice the mesh spacing hi in the direction (i) (c.f. Kwak
et al., 1975). In the z inhomogeneous direction, the filter
is produced by the grid discretisation.

The response of the flow to the forcing is picked out
by extracting the organised part of the unsteady motion
using phase averaging (see decomposition (1)) in which
the phase is given by the imposed periodic driving
force. This statistical procedure is used in the experi-
ments (Tardu and Binder, 1993; Tardu et al., 1994) and
has also been applied to the non-filtered Navier–Stokes
equations by Reynolds and Hussain, 1972 in their the-
oretical work on unsteady turbulence. The phase aver-
age corresponds indeed to the true statistical average.

2.2. Modelling

If we consider the turbulent energy spectrum, the
previously described lag effects will appear, in terms of
spectra, as a departure from the universal equilibrium
Kolmogoroff spectrum. This effect has to be included in
the subgrid-scale modelling approach. The subgrid-scale
model behaviour will of course depends on the location
of the cut-off induced by the filter which lies between the
two extreme limits that are the complete direct numeri-
cal simulation (DNS) in which all the turbulent scales
are resolved and the model is not active, and the one
point statistical modelling in which all the turbulent
scales are modelled. Reasoning in spectral space, when
the filter cut-off jc goes to infinity, the calculation must
approach a DNS, whereas in the case of a vanishing cut-
off, the calculation must in principle approach full sta-
tistical modelling.

As it has been yet mentioned above, both the Sma-
gorinsky and a one-equation subgrid-scale models are
explored in the present large eddy simulations applied to
the pulsed turbulent channel flow. These models are
both based on the subgrid-scale viscosity hypothesis,
and thus the stress tensor sij takes the form

sij ¼ �2msgsSij with Sij ¼
1

2

oUi

oxj

�
þ oUj

oxi

�
ð3Þ

where msgs denotes the subgrid-scale turbulence viscosity
defined from characteristic length and velocity scales.
The two models make use of the subgrid length scale lsgs
linked to the mesh size used in the calculation and de-
fined as

lsgs ¼ PminðDm; l
Þ½ �1=3 ð4Þ
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with l
 ¼ 0:1d=Cs for z6 0:1d=j and l
 ¼ jz=Cs for
z6 0:1d=j, where Dm denotes the filter width in the (m)
direction, d the width of the shear layer, z the wall dis-
tance and j ¼ 0:41 the Karman constant. Then, in the
case of a very coarse mesh, lsgs is limited by the classical
mixing length in full statistical modelling.

The relevant difference between the Smagorinsky
model and the transport model results from the subgrid-
scale viscosity formulation. For the Smagorinsky model
the velocity scale is directly linked to the instantaneous
filtered deformation tensor

msgs ¼ ðCslÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
for zP zC ð5aÞ

msgs ¼ C2

l4

m
ð2SijSijÞ for z6 zC ð5bÞ

with Cs ¼ 0:2, C2 ¼ C2
s =27j.

The relation (5b) expresses the effects of molecular
viscosity in the low Reynolds number near wall regions.
The quantity zC represents the distance to the wall for
which the two subgrid-scale viscosities (5a) and (5b)
once averaged on horizontal planes are equal.

In the case of the one-equation model the subgrid
velocity scale is given by the kinetic turbulent energy of
the implicit turbulent field ksgs and hence

msgs ¼ Cmsgslsgsk1=2sgs ð6Þ

The closure of the subgrid-scale turbulent kinetic energy
transport equation is inspired from the Hassid and
Poreh model (1975) in which the near wall viscous effects
are accounted for by coefficients that are functions of
the turbulence Reynolds number.

Transposing this full statistical closure to the case of
subgrid modelling leads to the following proposed
equation:

oksgs
ot

þ Uj
oksgs
oxj

¼ �sij
oUi

oxj
Dsgs � esgs ð7Þ

In order to include the viscous effects, the expression for
msgs is converted into:

msgs ¼ Cmsgslsgsk1=2sgs 1
�

� expð � AmsgsRsgsÞ
�

and the kinetic energy dissipation rate is given by

esgs ¼ Cesgs

k3=2sgs

lsgs

2

CesgsRsgs

�
þ 1� expð � AmsgsRsgsÞ

�
ð8Þ

with Rsgs ¼ ðlsgsk1=2sgs Þ=m, the Reynolds number defined on
the subgrid-scale.

A gradient diffusion hypothesis is used for the kinetic
energy:

Dsgs ¼
o

oxj
m

�
þ msgs

rsgs

oksgs
oxj

�
ð9Þ

The original Hassid and Poreh model is exactly recov-
ered when the spatial resolution becomes very coarse

and full statistical modelling is approached. This prac-
tice is justified by considering the statistical model as the
upper limit that should reach the one-equation model
when the filter size is very large. In such a case (when jc
vanishes, see Fig. 1) the average kinetic energy of the
implicit turbulent scales approaches the overall turbu-
lence energy of the flow. However, the numerical con-
stants appearing in the above equations have to be valid
for any filter size. These constants have been determined
and controlled in the case of a classical quasi-equilib-
rium turbulent channel flow used as a reference case and
using the Smagorinsky model. The following values are
retained (see Appendix A):

Cmsgs ¼ 0:116; Cesgs ¼ 0:85;

Amsgs ¼ 0:229 and rsgs ¼ 1

In the case of steady turbulent channel flow, the Sma-
gorinsky and the one-equation model should behave
similarly since no appreciable departure from equilib-
rium occurs and theKolmogorov hypothesis prevails. On
the contrary, when the flow is submitted to forced oscil-
lations, the behaviour of themodels should differ. Having
in mind the energy spectrum partitioning sketched in
Fig. 1, the Smagorinsky model implicitly assumes that
the dissipation esgs varies continuously in compliance
with the large scales of the flow field governed by the
production process. In pulsed flow, this implies that the
implicit turbulent field varies in phase with the forcing,
hence no lag or history effect can be accounted for. On
the contrary, the transport equation model, through its
partial kinetic energy equation, allows an account of
time delay effects between the subgrid-scale motion and
the forced oscillation imposed on the mean flow. The
dissipation term (Eq. (8)) only expresses that the char-
acteristic dissipation scale of subgrid turbulence is con-
nected to the characteristic subgrid length scale and
not at all to the large scales. Thus, the modelled scales
are thereby not directly influenced by the large energy

Fig. 1. Partioning of the energy spectrum for large eddy simulation.
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containing eddies, but only by the energy flux Fc ¼
�sijðoUi=oxjÞ through the cut-off (Fig. 1).

2.3. Numerical method

The numerical method for solving the instantaneous
flow field is based on Hermitian fourth order schemes
and pseudo-spectral Fourier developments (Schiestel
and Viazzo, 1995 and Viazzo and Schiestel, 1995). The
Navier–Stokes equations are solved using the skew-
symmetric form of the pressure-velocity formulation on
a staggered grid to overcome the pressure checker-
boarding problem and to verify good conservation prop-
erties for momentum and energy. The time advancement
is based on a hybrid Adams-Bashforth and Crank–
Nicolson scheme and the pressure-velocity coupling is
achieved efficiently by iteratively solving a simplified pres-
sure correction equation.

More precisely, the filtered momentum equations in
the skew-symmetric form are

oUi

ot
¼ Fi �

1

q
op
oxi

� 1

2

oUiUj

oxj
þ Uj

oUi

oxj

" #

� osij

oxj
þ mr2Ui ð10Þ

Fourier pseudo-spectral methods are used in the
homogeneous ðOxÞ and ðOyÞ directions, whereas the
Hermitian finite differences are applied in the inhomo-
geneous ðOzÞ direction. In the non-homogeneous direc-
tion ðOzÞ normal to the walls, the mesh is strongly
refined near the walls, using the following hyperbolic
transformation:

z ¼ 1

a
tanh½Z tanh�1ðaÞ� ð11Þ

where Z is the uniform coordinate in the transformed
space and a an adjustable parameter controlling the
refinement. By choosing Nz ¼ 62 grid points in the ðOzÞ
direction and a ¼ 0:98346, we get three grid points in
the viscous layer (zþ < 5). The second order derivative
of the Laplacian operator is split into two parts

o2U
2

i

oZ2
¼ Uiþ1 � 2Ui þ Ui�1

dZ2
þ cðU 2

i ; oUi=ozÞ ð12Þ

where the first term on the right hand side denotes the
second order difference and c a corrective term to re-
cover fourth order Hermitian finite difference.

We also make use of an averaging process of the eddy
viscosity over planes parallel to the walls, giving rise to
the decomposition msgs ¼ hmsgsi þ m0sgs, in which only the
terms including hmsgsi are incorporated in the Crank–
Nicolson scheme. All the remaining terms (except the
pressure gradient) are inserted in the Adams–Bashforth
scheme.

Hence, the discretised equations become:

U
nþ1

i � U
n
i

Dt
¼ 1

2
ð3Hn

i � Hn�1
i Þ � 1

q
opnþ1

oxi

þ 1

2
hmsgsin þ m
� �

d2
zzðU

nþ1

i þ U
n
i Þ

oU
nþ1

i

oxi
¼ 0: ð13Þ

(for numerical convenience, the eddy viscosities are
evaluated at the previous time step n).

The system (13) is solved using a fractional time step
method with an internal iterative process preserving
Hermitian accuracy. The initial velocity field in all cases
is obtained by interpolation of a previous large eddy
simulation carried out for the channel flow at the same
Reynolds number with 64 96 62 grid points (Viazzo,
1993).

For solving the subgrid-scale turbulence equation of
the transport model, the hybrid Adams–Bashforth and
Crank–Nicolson time scheme has not been retained be-
cause of time step limitations due to stiffness of the source
terms. So, a different time scheme was introduced for the
ksgs equation. The precision loss does not seem a real
problem as far as it concerns only the modelled equation.

The discretized form of the ksgs equation is given
below

kðnÞsgs � kðn�1Þ
sgs

Dt
¼ P ðn�1Þ �

eðn�1Þ
sgs

kðn�1Þ
sgs

 !
kðnÞsgs

þ 1

2
m

 
þ msgs

rsgs

� �ðn�1Þ

x;y

!
g2d2

zz k
ðnÞ
sgs

�
þ kðn�1Þ

sgs

�
ð14Þ

The first term on the right hand side denoted P, contains
the advective terms, the production terms and comple-
mentary diffusive terms due to variable diffusivity coef-
ficient and non-uniform mesh in the z direction. The
spatial derivatives are calculated as previously, using
centred Hermitian schemes. This equation can be solved
using the tridiagonal algorithm.

The initial conditions are obtained from equilibrium
relations deduced from the Smagorinsky model (Ap-
pendix A):

ksgs ¼ 2
Cmsgsl2sgs
Cesgs

SijSij

esgs ¼ Cesgs

k3=2sgs

lsgs

2

CesgsRsgs

�
þ 1� expð � AmsgsRsgsÞ

� ð15Þ

3. Preliminary test in fully developed turbulent channel
flow

The fully developed turbulent channel flow, charac-
terised by a Reynolds number based on the maximum
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mean velocity equal to 13,800 (as in Moin and Kim,
1982), has been chosen as the reference test case of a
quasi-equilibrium confined flow. As it has been yet
mentioned, the two models considered above ought to
give almost identical results in such quasi-equilibrium
situation. Thus, this case is helpful for calibrating the
subgrid-scale transport equation model.

The discussion turns principally on a direct compar-
ison between the results obtained with the Smagorinsky
model and transport equation model for the calculation
of steady fully developed channel flow performed on a
coarse mesh. However, some grid resolution aspects are
included as well and the statistical flow fields computed
on a finer mesh with the Smagorinsky model and the
one-equation model are compared.

Therefore, two meshes of differing densities have been
used in the calculations: a coarse mesh composed of
32 64 62 points on the domain (Lx ¼ 2pd, Ly ¼ pd,
Lz ¼ 2d) corresponding to the following discrete grid
space Dx ¼ 0:19d, Dy ¼ 0:049d, Dzmax ¼ 0:032d, and a
fine mesh composed of 256 128 62 points on the
domain (Lx ¼ 4pd, Ly ¼ 3p=2d, Lz ¼ 2d) corresponding
to Dx ¼ 0:049d, Dy ¼ 0:036d, Dzmax ¼ 0:032d. For the
fine mesh, the statistically steady state is reached after
about a total time of integration Tus=d ¼ 5, which rep-
resents more than 10 thousands time steps.

The results issued from the simulation of the fully
turbulent flow using the Smagorinsky model and the
one-equation model are directly compared on Figs. 2–7.
The velocity profile as the evolutions along the normal
direction to the wall of the turbulent intensity and tur-
bulent shear stress exhibit a similar behaviour for the
two models as expected. This is clearly illustrated by the

subgrid-scale turbulence viscosity profile drawn on
Fig. 5. The slight quantitative differences observed be-
tween the models can result from the description of the
near wall region which is not exactly identical for the
two models but are still not significant for the purpose of
the present paper which is concerned with unsteady
turbulence. Such discrepancies between calculations and
experiments (velocity and intensity profiles) have been
observed in a similar way by Piomelli et al. (1988) in
their study on the coupling between the Smagorinsky
model and a coarse grid resolution. Refining the mesh
provides better agreement with the experiments (Figs.
6,7). However, the simulations of the steady channel
flow clearly show that the one transport equation model,

Fig. 2. Mean velocity profiles in fully developed turbulent plane

channel flow, (}) Smagorinsky model (32 64 62), (þ) one-equa-

tion model (32 64 62), (�) logarithmic law 2:5 logðzÞ þ 5:45, (
)
Comte-Bellot experiment (1965, Re ¼ 57; 000), () Laufer experiment

(1951, Re ¼ 12; 000).

Fig. 3. Mean longitudinal turbulence intensity profiles in fully devel-

oped turbulent plane channel flow near the wall, (}) Smagorinsky

model (32 64 62), (þ) one-equation model (32 64 62), (
)
Kreplin and Eckelmann experiment (1979, Re ¼ 3350), () Hussain

and Reynolds experiment (1975, Re ¼ 13; 800), (D) Comte-Bellot

experiment (1965, Re ¼ 64; 000).

Fig. 4. Total turbulent shear stress profiles in plane channel flow, (})

Smagorinsky model (32 64 62), (þ) one-equation model (32
64 62), (
) Wei-Willmarth experiment (1989, Re ¼ 14; 914).
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at the limit of quasi-equilibrium turbulence, behaves
consistently with the widely accepted Smagorinsky
model.

4. Turbulent pulsed flow in a plane channel

By superimposing mean velocity oscillations in tur-
bulent channel flow, a modulation of the mean velocity
gradient is created and then diffused from the wall which
therefore influences the behaviour of the flow in the wall
layer. The experiments of Binder and Kueny (1981) and
Tardu and Binder (1993) have put in light that the tur-
bulent field response to the periodic forcing is essentially
dependent on the frequency of oscillation, while the
amplitude is not a determining parameter. These au-
thors have introduced the dimensionless Stokes length
as the relevant parameter; it is defined by lþs ¼ ls=lv in
the study of turbulent pulsed channel flow, ls ¼

ffiffiffiffiffiffiffiffiffiffiffi
2m=x

p
being the Stokes length and lv ¼ m=us the viscosity
length scale, thus we get lþs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u2s=mx

p
. This length is

interpreted as the distance over which the normal gra-
dient is propagated from the wall. The characteristic
Strouhal number xþ ¼ xm=u2s is directly linked to the
dimensionless Stokes length parameter through the re-
lation xþ ¼ 2=lþ2

s . This means that the higher is the
frequency, the tinier is the wall layer affected by the
oscillations. In such a case, much of the core flow in
the channel is moving in block.

If one considers that the turbulent flow near the wall
is dominated by viscous effects up to zþ � 12 in wall
units, the oscillation wave from the wall will then reach
the asymptotic outer value before turbulence can act
(Tardu et al., 1994) for frequency regimes that imply
lþs < 12, and a Stokes behaviour is expected. For lþs >
12, the response of the flow will then depart from the
Stokes solution.

From numerous parametric studies, Tardu et al.
(1994) and Binder et al. (1995) made clear the existence
of three frequency regimes: a quasi-steady regime
reached for lþs > 25, a relaxation regime for 10 < lþs <
13, in which important amplitude modulations of the
turbulence are observed together with phase shift effects,
and a high frequency regime for lower values of lþs in
which the Stokes solution is reached, but the distribu-
tion of velocity departs again from this solution for even
lower values lþs < 8, the burst-ejection process being
modified (Tardu and Binder, 1993).

In the present simulation the superimposed pertur-
bation is produced by a longitudinal sinusoidal mean
pressure gradient

Fx ¼ � 1ð þ AF sinðxtÞÞ ð16Þ

We have chosen here lþs ¼ 12:9, a value correspond-
ing to an intermediate frequency regime, for which a
strong interaction is possible between the scales of the

Fig. 5. Subgrid-scale turbulent viscosity (symbols, see Fig. 4).

Fig. 6. Mean velocity profiles in fully developed turbulent plane

channel flow, (}) Smagorinsky model (256 128 62), (þ) one-

equation model (256 128 62), (�) logarithmic law 2:5 logðzÞþ
5:45, (
) Comte-Bellot experiment (1965, Re ¼ 57; 000), () Laufer

experiment (1951, Re ¼ 12; 000).

Fig. 7. Mean longitudinal turbulence intensity profiles in fully devel-

oped turbulent plane channel flow near the wall, (}) Smagorinsky

model (256 128 62), (þ) one-equation model (256 128 62), (
)
Kreplin and Eckelmann experiment (1979, Re ¼ 3350), () Hussain

and Reynolds experiment (1975, Re ¼ 13; 800), (D) Comte-Bellot ex-

periment (1965, Re ¼ 64; 000).
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imposed oscillation and the turbulence itself. The am-
plitude is chosen to be weak with a value equal to
A ~UUc ¼ 0:05 Uc. This parameter choice corresponds to
values used in one of the experiments realised by Binder
and Kueny (1981). The numerical simulation has been

carried on for the coarse grid defined previously and
using the Smagorinsky model and the transport equa-
tion model. Results from a computation performed with
a finer grid resolution and the Smagorinsky model are
also presented to consider the effect of mesh density on

Fig. 8. Phase averages in turbulent pulsed channel flow. (þ) (a)–(e) One-equation model (32 64 62) and (f)–(j) Smagorinsky model (32 64 62):

(a,f) longitudinal velocity on the axis (z ¼ 0); (b,g) normal component of the velocity gradient at zþ ¼ 7:935; (c,h) longitudinal normal stress at

zþ ¼ 7:935; (d,i) explicit turbulent shear stress at zþ ¼ 7:935; (e,j) total turbulent shear stress at zþ ¼ 7:935.

404 A. Dejoan, R. Schiestel / Int. J. Heat and Fluid Flow 23 (2002) 398–412



the calculated statistical field. The fine grid mesh is
identical to the one presented above in the steady
channel results section. To gain insight into the flow
behaviour, the phase-averaged quantities are analysed in
terms of amplitudes and phases of the Fourier modes,
the phase average fqg ¼ hqi þ ~qq is decomposed as

fqg ¼ hqi þ A~qq cosðxt þ U~qqÞ

þ
X1
n¼2

A~qqn cosðnxt þ U~qqnÞ ð17Þ

where A~qq is the amplitude and U~qq the phase.

4.1. Time averaged flow

In each case, including the Smagorinsky model and
the one-equation model calculations, no appreciable
difference has been observed between the time mean
values obtained in unsteady pulsed channel flow and the
time mean values already obtained in steady fully de-
veloped channel flow. This absence of any influence
coming from the forcing on the time averaged quantities
is entirely supported by experimental data (Brereton
et al., 1990; Tardu et al., 1994).

4.2. Phase averaged flow

Time evolutions of the phase averages of the longi-
tudinal velocity at the centre channel and of turbulence
quantities at a particular distance near the wall are
represented on Fig. 8(a–j). These temporal evolutions
exhibit time delay between the periodic forcing and the
turbulence field modulation. They look very like a sine
function, the first Fourier mode being largely dominant.
This is confirmed on Fig. 9 showing the level of Fourier
modes at a given location for the longitudinal turbulent
stresses. Similar results have been obtained at different
locations and for others characteristic quantities in the
flow. The statistical convergence for phase averaging has
been obtained by considering about 24 periods of os-
cillation in time.

If one examines the amplitudes and phase shifts of
the phase averaged velocity, one can observe that the
oscillatory forcing affects significantly the wall flow.
However, the effect of the forcing appears to be only
weakly influenced by the type of model used in the
calculation. Both models can predict a velocity response
(Fig. 10a and b) in good agreement with the experi-
mental data of Binder and Kueny (1981), Tardu and

Fig. 8 (continued)
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Binder (1993) and Tardu et al. (1994). The observed
modulation is not far from the Stokes solution (see Fig.
10a, dashed lines).

The effect of the pulsation on the velocity field is
concentrated near the wall, indeed a steep gradient in
this region occurs in the velocity amplitude curve as well
as large phase shifts variations. The amplitude and the
time scale of the velocity modulation decreases when the
distance from the wall is increased. The departure from
the Stokes solution is related to the influence of the
periodic forcing on the wall turbulence field, the Stokes
length parameter in our computation (lþs ¼ 12:9) being
higher then the critical value (lþs ¼ 8:1) for which only
the viscous sublayer is affected by the forcing. In Fig.
10a, one can observe that the normal velocity gradient
oU=oz induced by the imposed oscillation is diffused up
to a zþ � 50. (zs ¼ 3) distance from the wall. Consider-

ing that this term is the driving force that acts on the
turbulent field, this wall zone is expected to be sensitive
to the subgrid-scale model. Indeed, if one considers the
turbulent field, the behaviour appears clearly different
from one model to another. The amplitude of the fun-
damental mode of the normal longitudinal turbulent
stress presented on Fig. 11a reveals that the type of
model is strongly determining for the predicted response
of the turbulent quantities. In the experiments of Tardu
et al. (1994), the amplitude profile is similar to the tur-
bulence intensity profile itself, with a peak region in the
region zþ ¼ 12 and a progressive decay afterwards. Fig.
11a shows that qualitatively, only the one-equation
transport model is successful in predicting the experi-
mental observations and in particular the experimental
peak in amplitude near the wall, whereas the Smago-
rinsky model provides a totally different amplitude
profile, the shape being more rounded, the near wall
peak absent and the amplitude decay not well repro-
duced far from the wall. Due to the particular choice of
the axis scaling, the peak observed in the experiments
looks as smoothed out. With the aim to put in light the
effects of the one-equation model, we have plotted in the
inner graph inside Fig. 11a the experimental data along
with the one-equation model results scaled with a con-
stant factor 0.42. Note that the maxima predicted by the
transport model are in quite good agreement with the
measurements and a similar decay with wall distance is
also observed. The amplitude profiles A~uu0u0 normalised
by the amplitude of the velocity modulation AU , repre-
sented on Fig. 11b, clearly shows the wall region affected
by the forcing: in the measurements, the wall region
located up to the distance zþ ¼ 20 strongly interacts
with the oscillation, a behaviour which is correctly
predicted by the transport equation model. In the case
of the Smagorisky model, the near wall region influ-

Fig. 9. Amplitude of the primary Fourier mode compared to the sec-

ondary Fourier modes for the oscillations of the turbulent longitudinal

stresses at zþ ¼ 7:935 distance from the wall, in pulsed channel flow,

(þ) one-equation model (32 64 62).

Fig. 10. (a) Amplitude and (b) phase shift of the fundamental mode of the oscillating velocity deviation from axial velocity. (}) Smagorinsky model

(32 64 62), (þ) one-equation model (32 64 62), (
) Binder and Kueny experiment (1981) lþs ¼ 12:2, a ~UU ¼ 0:05, Re ¼ 8500, (- - -) Stokes

solution.
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enced by the forcing is thinner (up to zþ ¼ 10) and the
amplitude modulation decreases more rapidly. For dis-
tances zþ > 35, both models have tendency to produce
an identical level of the relative amplitude because of the
decreasing effect of the forcing in this flow region. The
remaining quantitative discrepancies between the cal-
culated and the measured amplitudes (for velocity
and turbulence intensity) are difficult to explain, they
may be a consequence of Reynolds number effects, re-
minding that in the numerical simulation the Reynolds
number is 13,800 whereas in the experiment its value is
8600.

As far as phase shifts are concerned, the one-equation
model agrees very well with the experimental results,
while the Smagorinsky model calculation is far from the
measurements (Fig. 11c and d). The phase shift results
can also be interpreted in terms of time delay, by using
the relation suggested by Tardu et al., 1994:

Dtþ ¼ 1

2
ð/~uu0u0 � / ~UUcÞl2s ð18Þ

where the phase shifts are calculated in radians. This
corresponds to a dimensionless diffusion time giving an
order of magnitude of the velocity at which the turbulent

Fig. 11. Amplitude of the fundamental mode of the (a) longitudinal turbulence intensity, (b) normalized longitudinal turbulence intensity ((
) Binder
and Kueny experiment (1981)). (c) Phase shift, (d) dimensionless diffusion time delay of the fundamental mode of the longitudinal turbulence in-

tensity. ((
) Tardu et al. experiment (1994)). (}) Smagorinsky model (32 64 62), (þ) one-equation model (32 64 62). lþs ¼ 12:2, a ~UU ¼ 0:05,
Re ¼ 8500.
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intensity modulation is propagated away from the wall.
In the experiments, it has been shown that in the range
8:1 < lþs < 34, the variations of the time delay versus
distance from the wall, verify a linear decay such that
dzþ=dðDtþÞ � 0:4 for zþ > 30. Recast in terms of phase

lag, this linear law becomes dð/
u
~00 u0

� / ~UUcÞ=dzþ ¼ 2:5xþ

and also better fits the transport model predictions (see
Fig. 14).

Further insight is given now by considering the terms
involved in the production of the turbulence kinetic
energy P ¼ hP i þ ~PP with

hPi ¼ �hu0w0i ohUi
oz

~PP ¼ �hu0w0i o
~UU

oz
� gu0w0u0w0 ohUi

oz
� gu0w0u0w0 o

~UU
oz

ð19Þ

In the latter expression of ~PP , the third term is negligible
compared to the first two terms. Previous results sug-
gested that the time mean velocity gradient, the modu-
lation of the velocity gradient and the time mean
turbulent shear stress are all of them only weakly de-
pendent of the subgrid-scale model. So, the model de-
pendence observed on the modulation of the turbulence
intensity mainly comes from the contribution of the
modulation of turbulent shear stress. The total oscil-
lating turbulent shear stress can be decomposed as fol-
lows:

gu0w0u0w0
tot ¼ gu0w0u0w0

exp þ gu0w0u0w0
imp ð20Þ

Fig. 12. Relative amplitude of the fundamental mode of the (a) explicit turbulent shear stress, (b) total turbulent shear stress ((
) Feng et al. (1993)).

Dimensionless diffusion time of the fundamental mode of the (c) explicit turbulent shear stress modulation, (d) total turbulent shear stress modu-

lation ((
) Binder et al. experiment (1995)). (}) Smagorinsky model (32 64 62), (þ) one-equation model (32 64 62), lþs ¼ 12, a ~UU ¼ 0:2,

Re ¼ 8500.

Fig. 13. Difference in phase shift between the subgrid-scale turbulent

shear stress modulation and the normal velocity gradient modulation

versus zþ, (}) Smagorinsky model (32 64 62), (þ) one-equation

model (32 64 62).
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In Fig. 12a and b are plotted the amplitude for the ex-
plicit part and for the total turbulent shear stress. The
available experimental data (Tardu et al., 1994) used to
compare the behaviour of the turbulent shear stress
modulation correspond to the same Stokes length pa-
rameter lþs ¼ 12:5 but to a different amplitude of the
forcing velocity ~aac ¼ 0:2. However, recalling that ac-
cording to the experimental results the amplitude of the
forcing is not the leading parameter for pulsed channel
flow but that the relevant parameter is indeed the Stokes
length, the measurements realised for the relative am-
plitude ~aac ¼ 0:2. can be exploited for our analysis.
Compared to the experiment, the amplitude profile
shape of the total turbulent shear stress gu0w0u0w0

tot and its

resolved part gu0w0u0w0
exp are in good agreement. As for the

longitudinal turbulence intensity, the relative amplitude
of the shear stress modulation decreases away from the
wall. The comparison of the total shear stress amplitude
to its explicit part shows the importance of the modelled
subgrid contribution gu0w0u0w0

imp. Model dependent effects
are clearly apparent on the explicit turbulent shear stress
amplitude in the very near wall region. Indeed, for dis-
tances such that 0 < zþ < 20, the amplitude of the re-
solved turbulent stress in the one-equation case presents
higher values than in the Smagorinsky case.

Similar observations can be made for the distribution
of the time delay (Fig. 12c and d) which is the dimen-
sionless diffusion time versus the wall distance for gu0w0u0w0

tot

Fig. 14. Fundamental mode of the oscillating velocity deviation from axial velocity (a) amplitude and (b) phase shift. (}) Smagorinsky model

(32 64 62), () Smagorinsky model (256 128 62), (
) Binder and Kueny experiment (1981), lþs ¼ 12:2, a ~UU ¼ 0:05, Re ¼ 8500, (- - -) Stokes

solution.

Fig. 15. Fundamental mode of the longitudinal turbulence intensity (a) amplitude and (b) phase shift. (}) Smagorinsky model (32 64 62), ()

Smagorinsky model (256 128 62), (
) Binder and Kueny experiment (1981), lþs ¼ 12:2, a ~UU ¼ 0:05, Re ¼ 8500.
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and gu0w0u0w0
exp. In the case of the Smagorinsky model and

the one-equation model, the time delay obtained for the
resolved scales and for the total shear contribution are
clearly different. In the near wall region, the two models
can give differences between the values of the dimen-
sionless diffusion time that can reach up to 140 for the
total shear stress. Compared to the measurements, the
one-equation model provide better predictions (Fig.
12d). The temporal response of the subgrid-scale tur-
bulent viscosity to the velocity gradient oscillation
(Fig. 13) reveals that some history effects are clearly
accounted for by the transport model.

Because of the mesh resolution effects already men-
tioned, an additional numerical simulation has been
carried on with a finer grid resolution (identical to the
one used in the steady case) and the Smagorinsky model.
Comparison between the computations of the oscilla-
tory flow performed with the coarse and the fine grid
meshes and the Smagorinsky model are presented on
Figs. 14 and 15a and b. The two calculations lead to
similar results concerning the velocity and turbulent
fields quantities. The finer description of the longitudi-
nal and streamwise vortices due to the refinement in x
and y-directions did not influence significantly the tur-
bulent field as it has been the case in the steady flow.
Obviously, one has to keep in mind that, irrespective to
the type of model used, going to a finer grid resolution
in all the three spatial directions must provide a better
agreement because the calculation will be closer to a
DNS. However, such calculations are costly in computer
time and therefore the transport equation model appears
to be an efficient alternative in simulations using a
coarse mesh.

5. Concluding remarks

The results presented in this paper have shown an
encouraging first step in the simulation of unsteady
turbulent flows. For such flows, the unresolved turbu-
lent scales exhibit a determining role and thus the sub-
grid-scale model must take into account the history
effects. This is not possible at all with the Smagorinsky
model which is based on an instantaneous adjustment of
the implicit turbulent shear stress with the explicit de-
formation tensor. The transport equation model proved
to be an efficient method in the development of models
that bridge the LES approach and the RANS approach.

Future work would probably have to concentrate on
the assumption of the characteristic length for dissipa-
tion, which is directly linked to the filter size. Indeed,
when very large eddy simulations in which the cut-off can
be located before the spectral inertial range, this as-
sumption will have to be revised (Dejoan and Schiestel,
1999). However, the various applications carried on for
unsteady turbulent flows (Dejoan et al., 1997; Dejoan,

1998) have put in light the interesting potentials of the
present method for the simulation of turbulent flows
undergoing departures from equilibrium due to un-
steadiness in the mean. In the turbulent pulsed channel
flow, the one-equation model gives a far better determi-
nation of the phase-shifts linked to the lag effects pro-
duced by unsteadiness.
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Appendix A. Determination of numerical constants in the

one-equation model

The determination of the numerical constants in the
one-equation transport model is made by reference to
the zero pressure gradient turbulent boundary layer.

In the fully turbulent zone, the turbulent viscosity
and the dissipation rate take the form

msgs ¼ Cmsgslsgsk1=2sgs and esgs ¼ Cesgs

k3=2sgs

lsgs
ðA:1Þ

The production term is given by

P ¼ 2msgsSijSij ðA:2Þ
The equilibrium hypothesis implies

ksgs ¼ 2SijSij
Cmsgsl2sgs
Cesgs

ðA:3Þ

From the modelled turbulent viscosity given by (A.1),
one can deduce the value of kinetic energy

ksgs ¼
msgs

Cmsgslsgs

� �2

ðA:4Þ

and from the two previous equations, it comes

msgs ¼ Cmsgs
Cmsgs

Cesgs

� �1=2

l2sgsð2SijSijÞ
1=2 ðA:5Þ

Comparing to the Smagorinsky model msgs ¼ ðCslÞ2 
ð2SijSijÞ1=2 a first relation is obtained between the coef-
ficients

Cmsgs
Cmsgs

Cesgs

� �1=2

¼ C2
s ðA:6Þ

When the upper limit of the mixing length is reached

P ¼ msgs
oU
oz

���� ����2 ¼ esgs ðA:7Þ

and the following relation holds

C2
s l

2
sgs

oU
oz

���� ����3 ¼ Cesgs

k3=2sgs

lsgs
or

u3
s

jz
¼ CsCesgs

k3=2sgs

jz
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and then a second relation is obtained

u2s
ksgs

� �3=2

¼ CsCesgs ðA:8Þ

where the value of u2s=k (ksgs ! k) is estimated by
0.3.

In the viscous sublayer, the turbulent Reynolds
number is low and when Rsgs ! 0, the subgrid viscosity
is equivalent to

msgs ¼ Cmsgslsgsk1=2sgs AmsgsRsgs ¼
Cmsgsl2sgsAmsgsksgs

m
ðA:9Þ

and the dissipation can be approximated by

esgs ¼
2mksgs
l2sgs

þ
CesgsAmsgsk2sgs

m
! 2mksgs

l2sgs
ðA:10Þ

Very near the wall the dissipation and diffusion terms
are in balance, so

Dsgs ¼
2mksgs
l2sgs

ðA:11Þ

In the viscous sublayer, the approximate balance is

2msgsSijSij þDsgs ¼ esgs ðA:12Þ

Using the relations (A.9) to (A.11), one can deduce from
(A.12) a relation for kinetic energy which is identical to
(A.3). This relation once reported into (A.9) gives

msgs ¼
C2

msgsl
4
sgsAmsgs

mCesgs
ð2SijSijÞ ðA:13Þ

Compared to (5b), a new relation is obtained between
the numerical constants

Amsgs ¼
CesgsC4

S

27jC2
esgs

ðA:14Þ

Using Cs ¼ 0:2, the following numerical values are ob-
tained

Cmsgs ¼ 0:116; Cesgs ¼ 0:85; Amsgs ¼ 0:229

Also the pseudo Prandtl number for turbulent diffu-
sion is taken to be rsgs ¼ 1, like in the full statistical
model.
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